Abstract
The classical Khasminskii theorem (see [6]) on the nonexplosion solutions of stochastic differential equations (SDEs) is very important since it gives a powerful test for SDEs to have nonexplosion solutions without the linear growth condition. Recently, Mao [13] established a Khasminskii-type test for stochastic differential delay equations (SDDEs). However, the Mao test can not still be applied to many important SDDEs, e.g., the stochastic delay power logistic model in population dynamics. The main aim of this paper is to establish an even more general Khasminskii-type test for SDDEs that covers a wide class of highly nonlinear SDDEs. As an application, we discuss a stochastic delay Lotka-Volterra model of the food chain to which none of the existing results but our new Khasminskii-type test can be applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.