Abstract

We discuss some ideas for improvement, extension and application of proximal point methods and the auxiliary problem principle to variational inequalities in Hilbert spaces. These methods are closely related and will be joined in a general framework, which admits a consecutive approximation of the problem data including applications of finite element techniques and the e-enlargement of monotone operators. With the use of a ”reserve of monotonicity” of the operator in the variational inequality, the concepts of weak- and elliptic proximal regularization are developed. Considering Bregman-function-based proximal methods, we analyze their convergence under a relaxed error tolerance criterion in the subproblems. Moreover, the case of variational inequalities with non-paramonotone operators is investigated, and an extension of the auxiliary problem principle with the use of Bregman functions is studied. To emphasize the basic ideas, we renounce all the proofs and sometimes precise descriptions of the convergence results and approximation techniques. Those can be found in the referred papers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.