Abstract
Strong convergence property for Halpern-type iterative method with inertial terms for solving variational inequalities in real Hilbert spaces is investigated under mild assumptions in this paper. Our proposed method requires only one projection onto the feasible set per iteration, the underline operator is monotone and uniformly continuous which is more applicable than most existing methods for which strong convergence is achieved and our method includes the inertial extrapolation step which is believed to increase the rate of convergence. Numerical comparisons of our proposed method with some other related methods in the literature are given.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have