Abstract
In this paper, we study variational inequalities in a real Hilbert space, which are governed by a strongly monotone and Lipschitz continuous operator F over a closed and convex set C. We assume that the set C can be outerly approximated by the fixed point sets of a sequence of certain quasi-nonexpansive operators called cutters. We propose an iterative method, the main idea of which is to project at each step onto a particular half-space constructed using the input data. Our approach is based on a method presented by Fukushima in 1986, which has recently been extended by several authors. In the present paper, we establish strong convergence in Hilbert space. We emphasize that to the best of our knowledge, Fukushima’s method has so far been considered only in the Euclidean setting with different conditions on F. We provide several examples for the case where C is the common fixed point set of a finite number of cutters with numerical illustrations of our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.