Abstract
Based on Valiant's class # P of all functions counting the number of accepting computations of nondeterministic polynomial-time Turing machines, the polynomial-time hierarchy of counting functions is introduced. The class PHCF of all functions of this hierarchy and some of its subclasses are characterized by recursion-theoretic means. It turns out that, from the recursion-theoretic point of view, PHCF is an analogue to Kalmár's class E of elementary functions, to the class Pspace of polynomial-space computable functions as well as to the class P of polynomial-time computable functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.