Abstract
Counting classes consist of languages defined in terms of the number of accepting computations of nondeterministic polynomial-time Turing machines. Well-known examples of counting classes are NP, co-NP, ⊕ P, and PP. Every counting class is a subset of P #P[1], the class of languages computable in polynomial time using a single call to an oracle capable of determining the number of accepting paths of an NP machine. Using closure properties of #P, we systematically develop a complexity theory for counting classes defined in terms of thresholds and moduli. An unexpected result is that MOD k i P = MOD k P for prime k. Finally, we improve a result of Cai and Hemachandra (1990) by showing that recognizing languages in the class Few is as easy as distinguishing uniquely satisfiable formulas from unsatisfiable formulas (or detecting unique solutions, as in Valiant and Vazirani (1986)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.