Abstract

It is known that many of the Special Functions of mathematical physics appear as matrix elements of Lie group representations. This paper is concerned with a beginning attack on the converse problem, i.e., finding conditions that a given function be a matrix element. The methods used are based on a combination of ideas from system theory, functional analysis, Lie theory, differential algebra, and linear ordinary differential equation theory. A key idea is to attach a symbol as an element of a commutative algebra. In favorable cases, this symbol defines a Riemann surface, and a meromorphic differential form on that surface. The topological and analytical invariants attached to this form play a key role in system theory. The Lie algebras of the groups appear as linear differential operators on this Riemann surface. Finally, it is shown how the Picard-Vessiot-Infeld-Hull theory of factorization of linear differential operators leads to realization of many Special Functions as matrix representations of group representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call