Abstract
Most of the special functions of mathematical physics are connected with the representation of Lie groups. The action of elements D of the associated Lie algebras as linear differential operators gives relations among the functions in a class, for example, their differential recurrence relations. In this paper, we apply the fractional generalizations Dμ of these operators developed in an earlier paper in the context of Lie theory to the group SO(2,1) and its conformal extension. The fractional relations give a variety of interesting relations for the associated Legendre functions. We show that the two-variable fractional operator relations lead directly to integral relations among the Legendre functions and to one- and two-variable integral representations for those functions. Some of the relations reduce to known fractional integrals for the Legendre functions when reduced to one variable. The results enlarge the understanding of many properties of the associated Legendre functions on the basis of the underlying group structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.