Abstract
The interest in wideband data transmission over power line communications has increased rapidly. This technology offers a convenient and inexpensive medium to transmit data, reducing the number of cables. This advantage is particularly appealing in many fields, like the railway, naval, and aeronautical ones. Nevertheless, several problems have to be faced to obtain a high data rate. In particular, the presence of noise makes the transmission difficult, degrading the quality of received signals and prohibiting the full application of these communication frameworks. In this paper the behaviour of an in-ship powerline communication system is analyzed in the presence of synchronous periodic impulsive noise. Such noise is modelled at source and its effects on the transmission of wideband signals are evaluated by means of a simulation circuit model. The obtained results allow to identify the characteristics of the channel and the critical conditions due to noise. Subsequently, an unsupervised technique based on principal component analysis and fuzzy c-mean classifier detects the presence and classifies the specific noises. Numerical results show that the proposed approach enables to achieve this target accurately under different operating conditions, proving to be an effective tool to enhance the performances of the considered technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.