Abstract

Ionic liquids (ILs), which are used as solvents for chemical reactions, are different from conventional organic solvents owing to their designability. Physicochemical parameters of the ILs, such as polarity and viscosity, that affect chemical equilibria and reaction kinetics can be tuned by changing the combination of anions and cations or by varying the lengths of the alkyl chains present in the cations. We were interested in knowing how these physicochemical parameters affect fundamental chemical reactions in ILs. Therefore, in this personal account, we investigate our recent work on two different photochemical reactions in ILs, namely excited-state intramolecular proton transfer of hydroxyflavone and photodissociation of aminodisulfide, using time-resolved spectroscopic techniques. Interestingly, the roles of the ILs in these chemical reactions are quite different. The effect of the cationic species of the ILs (i. e., the head groups and number of alkyl carbons) on the solvation environment upon photoexcitation and reaction rate are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call