Abstract
We show that solvable absolute Galois groups have an abelian normal subgroup such that the quotient is the direct product of two finite cyclic and a torsion-free procyclic group. In particular, solvable absolute Galois groups are metabelian. Moreover, any field with solvable absolute Galois group G admits a non-trivial henselian valuation, unless each Sylow-subgroup of G is either procyclic or isomorphic to Z2⋊Z/2Z. A complete classification of solvable absolute Galois groups (up to isomorphism) is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.