Abstract

Gromov’s Polynomial Growth Theorem [Gro81] states that the property of having polynomial growth characterizes virtually nilpotent groups among all finitely generated groups. Gromov’s theorem inspired the more general problem (see, e.g. [GdlH91]) of understanding to what extent the asymptotic geometry of a finitelygenerated solvable group determines its algebraic structure—in short, are solvable groups quasi-isometrically rigid? In general they aren’t: very recently A. Dioubina [Dio99] has found a solvable group which is quasi-isometric to a group which is not virtually solvable; these groups are finitely generated but not finitely presentable. In the opposite direction, first steps in identifying quasi-isometrically rigid solvable groups which are not virtually nilpotent were taken for a special class of examples, the solvable BaumslagSolitar groups, in [FM98] and [FM99b]. The goal of the present paper is to show that a much broader class of solvable groups, the class of finitely-presented, nonpolycyclic, abelian-bycyclic groups, is characterized among all finitely-generated groups by its quasi-isometry type. We also give a complete quasi-isometry classification of the groups in this class; such a classification for nilpotent groups remains a major open question. Motivated by these results, we offer a conjectural picture of quasi-isometric classification and rigidity for polycyclic abelianby-cyclic groups in §10.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call