Abstract

Homojunctions comprised of transition-metal dichalcogenides (TMD) polymorphs are attractive building blocks for next-generation two-dimensional (2D) electronic circuitry. However, the synthesis of such homojunctions, which usually involves elaborate manipulation at the nanoscale, still remains a great challenge. Herein, we demonstrated a solution-processing strategy to successfully harvest lateral semiconductor-metal homojunctions with high yield. Specially, through precisely controlled lithiation process, precursors of polymorphic crystal arranged with 1T-2H domains were successfully achieved. A programmed exfoliation procedure was further employed to orderly laminate each phase in the polymorphic crystal, thus leading to 1T-2H TMD homojunction monolayers with sizes up to tens of micrometers. Moreover, the atomically sharp boundaries and superior band alignment improved the device on the basis of the semiconductor-metal homojunction with 50% decrease of electric field strength required in the derivation of state transition. We anticipate that solution processing based on programmed exfoliation would be a powerful tool to produce new configurations of 2D nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.