Abstract

For the solution of the Cauchy problem for the linear telegraph equation in three-dimensional space, we derive a formula similar to the Kirchhoff one for the linear wave equation (and turning into the latter at zero conductivity). Additionally, the problem of determining the field of a given exterior current source in an infinite homogeneous isotropic conductor is reduced to a generalized Cauchy problem for the three-dimensional telegraph equation. The derived formula enables us to reduce this problem to quadratures and, in some cases, to obtain exact three-dimensional solutions with a propagating front, which are of great applied importance for testing numerical methods for solving Maxwell’s equations. As an example, we construct the exact solution of the field from a Hertzian dipole with an arbitrary time dependence of the current in an infinite homogeneous isotropic conductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.