Abstract
The implicit and unconditionally stable numerical method proposed in Skiba (2015) is applied to solve linear advection-diffusion-reaction problems and nonlinear diffusion-reaction problems on a sphere. Numerical experiments carried out on a high-resolution spherical mesh show the effectiveness of the method in modelling linear advection-diffusion processes on a sphere (dispersion of pollution in the atmosphere), and nonlinear diffusion processes (propagation of nonlinear temperature waves, blow-up regimes of combustion, and chemical reactions in the Gray-Scott model). The method correctly describes the mass balance of a substance in forced and dissipative systems and conserves the total mass and norm of the solution in the absence of forcing and dissipation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have