Abstract
The climate of the Andean equatorial mountains has a pronounced spatiotemporal variability, which, coupled with limited meteorological monitoring, hampers our understanding of the regional and local atmospheric processes that govern this variability. To deepen our understanding of this region’s climate, we analyzed diurnal to seasonal meteorological patterns of the main meteorological variables: precipitation, air temperature, relative humidity, incident solar radiation, and wind speed and direction. We used a unique 10-year high-resolution dataset from March 2013 to February 2023 along an elevation gradient located in southern Ecuador. Our analyses reveal a trimodal regime of precipitation; two wet seasons are associated with convective processes influenced by the position of the Intertropical Convergence Zone (ITCZ) over the study area during the equinoxes, and the less humid season is due to the intensification of the Walker circulation, which produces subsidence over the study area. The relative humidity shows distinct daily and seasonal variations, reaching minimum daily values around noon when the air temperature is the highest, and an annual minimum in November. Incident solar radiation reaches its maximum values around the equinoxes when sunlight is almost perpendicular, which produces greater heating on the surface and, hence, a more humid atmosphere. The meridional displacement of the ITCZ around the year influences the climate, increasing humidity from March to May and wind speed from April to July. Our research reveals significant differences between diurnal and seasonal meteorological cycles, highlighting the importance of altitude, topography, and wind patterns in the climate dynamics of the equatorial Andes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have