Abstract

We study the melting of skyrmions in a two-dimensional Heisenberg chiral magnet with bi-axial Dzyaloshinskii--Moriya interactions. These topological excitations may form at zero temperature a triangular crystal with long-range positional order. However, we show using large-scale Monte Carlo simulations that at small finite temperature, the skyrmions rather form a typical two-dimensional solid: Positional correlations decay with distance as power laws while the orientational correlations remain finite. At higher temperature, we observe a direct transition from this two-dimensional solid to a liquid with short-range correlations. This differs from generic two-dimensional homogeneous particle systems, where a hexatic phase is realized between the solid and the liquid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call