Abstract

The magnetic skyrmion is a topologically stable vortex-like spin texture that offers great promise as information carriers for future spintronic devices. In a two-dimensional chiral magnet, it was generally considered that a tilted magnetic field is harmful to its formation and stability. Here we investigated the angular-dependent stability of magnetic skyrmions in FeGe nanosheets by using high-resolution Lorentz transmission electron microscopy (Lorentz TEM). Besides the theoretically predicted destruction of skyrmion lattice state by an oblique magnetic field as the temperature closes to its magnetic Curie temperature Tc ∼ 278 K, we also observed an unexpected reentry-like phenomenon at the moderate temperatures near the border between conical and skyrmion phase, Tt ∼ 240 K. This behavior is completely beyond the theoretical prediction in a conventional two-dimensional (2D) system. Instead, a three-dimensional (3D) model involving the competition between conical phase and skyrmions is likely to play a crucial role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call