Abstract
AbstractIn the moist mid‐latitudes of eastern Australia, soil water dynamics, herbage production and water use efficiency (WUE) were monitored during 2006–2008, for five perennial pastures: digit grass (Digitaria eriantha), Rhodes grass (Chloris gayana), forest bluegrass (Bothriochloa bladhii), native grass (Bothriochloa macra and Rytidosperma bipartita dominant), lucerne (Medicago sativa); and two forage crops: oat (Avena fatua) and sorghum (Sorghum bicolor). Ground cover formed more quickly in Rhodes grass and lucerne (>70% ground cover in 120 and 175 days after sowing [DAS] respectively) than in forest bluegrass and digit grass (245 and 365 DAS respectively). Values of maximum extractable water (MEW) for Rhodes grass and lucerne were similar (180–242 mm), while values for digit grass and forest bluegrass (129–175 mm) were equal to or greater than those for native grass, and two annual forage crops (77–144 mm). Lucerne expressed the maximum root depth (1.46 m), while values for the tropical grasses (0.96–1.39 m) were greater than native grasses and forage crops (0.87–0.96 m). Native grasses (6.5–12 t DM/ha) had the lowest herbage production, which resulted in values of WUE that were significantly less than most other treatments (16–21 vs. 23–43 kg DM ha−1 mm−1). Digit grass (33–34 kg DM ha−1 mm−1) had higher WUE compared with the other tropical grasses (20–27 kg DM ha−1 mm−1). The data collected here suggest that a forage system comprising digit grass, lucerne and forage oat would provide high production and WUE in this environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have