Abstract
Soil microbial carbon use efficiency (CUE) is a combination of growth and respiration, which may respond differently to climate change depending on physical protection of soil carbon (C) and its availability to microbes. In a mid-latitude hardwood forest in central Massachusetts, 27 years of soil warming (+5 °C) has resulted in C loss and altered soil organic matter (SOM) quality, yet the underlying mechanisms remain unclear. Here, we hypothesized that long-term warming reduces physical aggregate protection of SOM, microbial CUE, and its temperature sensitivity. Soil was separated into macroaggregate (250–2000 μm) and microaggregate (<250 μm) fractions, and CUE was measured with 18O enriched water (H218O) in samples incubated at 15 and 25 °C for 24 h. We found that long-term warming reduced soil C and nitrogen concentrations and extracellular enzyme activity in macroaggregates, but did not affect physical protection of SOM. Long-term warming showed little effect on CUE or microbial biomass turnover time because it reduced both growth and respiration. However, CUE was less temperature sensitive in macroaggregates from the warmed compared to the control plots. Our findings suggest that microbial thermal responses to long-term warming occur mostly in soil compartments where SOM is less physically protected and thus more vulnerable to microbial degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.