Abstract

Soil microbial carbon use efficiency (CUE) is a vital physiological parameter in assessing carbon turnover. Yet, how the microbial assemblies with distinct trophic strategies regulate the soil microbial CUE remains elusive. Based on the oligotrophic-copiotrophic framework, we explored the role of microbial taxa with different trophic strategies in mediating microbial CUE (determined by a 13C-labeled approach) along the vegetation primary succession in Hailuogou glacier retreat area of the southeastern Tibetan Plateau. Results showed that soil microbial CUE ranged from 0.54 to 0.72 (averaging 0.62 ± 0.01 across all samples) and increased staggeringly along the vegetation succession. Microbial assemblies with distinct trophic strategies were crucial regulators of soil microbial CUE. Specifically, microbial CUE increased with microbial oligotroph: copiotroph ratios, oligotroph-dominated stage had a higher microbial CUE than copiotroph-dominated ones. The prevalence of oligotrophic members would be the underlying microbial mechanism for the high microbial CUE. Given that oligotrophs predominate in more recalcitrant carbon soils and their higher microbial CUE, we speculate that oligotrophs are likely to potentially enhance carbon sequestration in soils. In addition, the responses of the microbial CUE to fungal oligotroph: copiotroph ratios were higher than bacterial ones. Fungal taxa may play a dominant role in shaping microbial CUE relative to bacterial members. Overall, our results constructed close associations between microbial trophic strategies and CUE and provide direct evidence regarding how microbial trophic strategies regulate microbial CUE. This study is a significant step forward for elucidating the physiological mechanisms regulating microbial CUE and has significant implications for understanding microbial-mediated carbon cycling processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.