Abstract

To optimize materials and devices for solar photoelectrochemical hydrogen production, a detailed understanding of the chemical and electronic properties, in particular at the reactive surfaces and interfaces, is needed. In this review article we will show how electron and soft X-ray spectroscopies can provide such information. We will present exemplary studies using X-ray photoelectron spectroscopy, soft X-ray emission spectroscopy, UV photoelectron spectroscopy, and inverse photoemission. While the first two techniques mainly give insight into the chemical properties at and near the surface, the latter two methods allow us to derive the electronic levels relevant for photoelectrochemical water splitting at the surface of the investigated material. Ultimately, the ideal experiment would be performed in situ, in which the device is studied under working conditions, i.e., in a liquid environment and under illumination. We will give a short outlook on how this can be achieved experimentally under the strict requirements of the measurement environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.