Abstract

Over the past decade advances in instrumentation and software have enabled development of spectro-ptychography (SP) as a higher spatial resolution extension of scanning transmission X-ray microscopy (STXM). Direct comparisons are made of same-area chemical state imaging of Cu nanoparticles using STXM and SP in order to compare and contrast the two approaches. We show that SP gives very similar chemical state information as STXM with significantly better spatial resolution and much higher quality images and chemical maps, on account of finer pixels in the reconstructed images. When defocused spot sizes are used (i.e., 1–3 μm, as opposed to full-focus 30–50 nm) SP data acquisition is faster and the radiation dose delivered to the sample is smaller than the corresponding STXM measurement. The limitations of SP are primarily related to the time and complexity of the ptychographic reconstruction. We argue that these documented advantages mean that SP rather than STXM should be used for more complex studies such as tomography and in situ studies, especially when radiation damage is a concern. The main point of this manuscript is to illustrate, with scientifically relevant samples, the significant advantages of SP relative to conventional STXM, with the goal of encouraging greater use of SP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.