Abstract

A variety of ashes used as the binder in geopolymer concrete such as fly ash (FA), ground granulated blast furnace slag (GGBS), rice husk ash (RHA), metakaolin (MK), palm oil fuel ash (POFA), and so on, among of them the FA was commonly used to produce geopolymer concrete. However, one of the drawbacks of using FA as a main binder in geopolymer concrete is that it needs heat curing to cure the concrete specimens, which lead to restriction of using geopolymer concrete in site projects; therefore, GGBS was used as a replacement for FA with different percentages to tackle this problem. In this study, Artificial Neural Network (ANN), M5P-Tree (M5P), Linear Regression (LR), and Multi-logistic regression (MLR) models were used to develop the predictive models for predicting the compressive strength of blended ground granulated blast furnace slag and fly ash based-geopolymer concrete (GGBS/FA-GPC). A comprehensive dataset consists of 220 samples collected in several academic research studies and analyzed to develop the models. In the modeling process, for the first time, eleven effective variable parameters on the compressive strength of the GGBS/FA-GPC, including the Activated alkaline solution to binder ratio (l/b), FA content, SiO2/Al2O3 (Si/Al) of FA, GGBS content, SiO2/CaO (Si/Ca) of GGBS, fine (F) and coarse (C) aggregate content, sodium hydroxide (SH) content, sodium silicate (SS) content, (SS/SH) and molarity (M) were considered as the modeling input parameters. Various statistical assessments such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R2) were used to evaluate the efficiency of the developed models. The results indicated that the ANN model better predicted the compressive strength of GGBS/FA-GPC mixtures compared to the other models. Moreover, the sensitivity analysis demonstrated that the alkaline liquid to binder ratio, fly ash content, molarity, and sodium silicate content are the most affecting parameter for estimating the compressive strength of the GGBS/FA-GPC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call