Abstract
Based on Crout's method, we will present, in this work, new non singularity criteria and sufficient conditions for existence of the LU factorization, for non strictly diagonally dominant pentadiagonal matrices. Crout's method is a recursive process of n stages that obtains the factorization A = LU of a pentadiagonal matrix of order n. In this recursive process of obtaining both the lower triangular matrix L and the upper triangular matrix U, the parameters alpha_i, 1 <= i <= n, must be non-zero to ensure that det(A) neq 0 and A = LU. Crout's recursive method is replaced by the analysis of sufficient conditions that can be verified simultaneously with low computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.