Abstract
The present work is part of the result of the author's doctoral dissertation and aims at presenting a metapopulational aggregation model with a density-independent migration rate that allows the choice of the destination site according to its density. A non-linear coupling is produced here, formed by a convex combination of two matrices, one with a local connection and the other with a global connection. The result obtained here guarantees the asymptotic stability of the synchronized attractor and also that the transverse Lyapunov number of the synchronized attractor is given by the product of the orbital Lyapunov number by a quantifier that depends on the migration rate and the eigenvalues of an originating matrix of the connection matrix. From the numerical simulations of the variation of the transversal Lyapunov number in relation to the parameters migration rate and intrinsic reproduction rate of the function that describes the local dynamics, the regions of possible and impossible synchrony are measured. With the simulations of the synchronized orbit with respect to small perturbations, the values of the intrinsic reproduction rate and the migration rate are determined, for which the most synchronization occurs, and it is also determined that there is no synchronization of chaotic orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.