Abstract
Motivated by the study of the equilibrium equations for a soap film hanging from a wire frame, we prove a compactness theorem for surfaces with asymptotically vanishing mean curvature and fixed or converging boundaries. In particular, we obtain sufficient geometric conditions for the minimal surfaces spanned by a given boundary to represent all the possible limits of sequences of almost-minimal surfaces. Finally, we provide some sharp quantitative estimates on the distance of an almost-minimal surface from its limit minimal surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.