Abstract

Soap films hanging from a wire frame are studied in the framework of capillarity theory. Minimizers in the corresponding variational problem are known to consist of positive volume regions with boundaries of constant mean curvature/pressure, possibly connected by “collapsed” minimal surfaces. We prove here that collapsing only occurs if the mean curvature/pressure of the bulky regions is negative, and that, when this last property holds, the whole soap film lies in the convex hull of its boundary wire frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.