Abstract

Snoring is one of the earliest symptoms of Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS). Snore detection is the first step in developing non-invasive, low-cost, and totally sound-based OSAHS analysis approaches. In this work, we propose a simple yet effective deep neural network, named SnoreNet, for detecting snores from a continuous sound recording. Without manually crafted features, SnoreNet can capture the characteristics of snores. Since snore varies in temporal length, SnoreNet combines output from multiple feature maps to detect snore. In each feature map, SnoreNet uses a set of default bounding box generated by a base length and different scales to match snores. SnoreNet adjusts the box to better locate snores and predicts a score for the presence of snore in each default bounding box. The performance of SnoreNet was evaluated on a newly collected snore pattern classes dataset, which achieves 81.82% average precision (AP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.