Abstract

The synaptosomal-associated protein of 25 kDa (SNAP-25) is expressed in neurons and endocrine cells. It has been shown to play an important role in the release mechanism of neurotransmitters and peptide hormones, including insulin. Thus, when insulin-secreting cells are permeabilized and treated with botulinum neurotoxin E (BoNT/E), SNAP-25 is hydrolyzed, and insulin secretion is inhibited. Recently SNAP-23, a more generally expressed isoform of SNAP-25, has been described. The functional role of SNAP-23 has not been investigated to date. It is now shown that SNAP-23 is resistant to cleavage by BoNT/E. It was therefore possible to test whether transfection of HIT (transformed pancreatic B-) cells with SNAP-23 reconstitutes insulin release from BoNT/E treated cells, in which SNAP-25 is inactivated by the toxin. The results show that SNAP-23 is able to replace SNAP-25 when it is overexpressed. While these results demonstrate that SNAP-23 is a functional homologue of SNAP-25, able to function in regulated exocytosis, they indicate that SNAP-23 may be inefficient in this process. This suggests that both isoforms may have their own specific binding partners and discrete, albeit mechanistically similar, functional roles within the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.