Abstract

Botulinum neurotoxin E (BoNT/E) can cause paralysis in humans and animals by blocking neurotransmitter release from presynaptic nerve terminals. How this toxin targets and enters neurons is not known. Here we identified two isoforms of the synaptic vesicle protein SV2, SV2A and SV2B, as the protein receptors for BoNT/E. BoNT/E failed to enter neurons cultured from SV2A/B knockout mice; entry was restored by expressing SV2A or SV2B, but not SV2C. Mice lacking SV2B displayed reduced sensitivity to BoNT/E. The fourth luminal domain of SV2A or SV2B alone, expressed in chimeric receptors by replacing the extracellular domain of the low-density lipoprotein receptor, can restore the binding and entry of BoNT/E into neurons lacking SV2A/B. Furthermore, we found disruption of a N-glycosylation site (N573Q) within the fourth luminal domain of SV2A rendered the mutant unable to mediate the entry of BoNT/E and also reduced the entry of BoNT/A. Finally, we demonstrate that BoNT/E failed to bind and enter ganglioside-deficient neurons; entry was rescued by loading exogenous gangliosides into neuronal membranes. Together, the data reported here demonstrate that glycosylated SV2A and SV2B act in conjunction with gangliosides to mediate the entry of BoNT/E into neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.