Abstract

Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, and endocytic proteins. Yet, the composition and control of these complexes in response to external cues remain unclear. We use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures in human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with growth factors. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR1, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR activity with drugs prevents the recruitment of both EGFR and FGFR1. EGF was able to activate FGFR1 phosphorylation. Our data reveals novel co-clustering and activation of receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF or FGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.