Abstract

Snake-in-the-box codes under Kendall’s <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau $ </tex-math></inline-formula> -metric are studied in the rank modulation scheme for flash memories, where codewords are a subset of permutations in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{n}$ </tex-math></inline-formula> with minimal Kendall’s <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau $ </tex-math></inline-formula> -distance two, and two cyclically consecutive codewords are connected via a push-to-the-top operation. Studies so far restrict the push-to-the-top operations only on odd indices, resulting in a snake consisting of permutations with the same parity, and thus, the minimal distance constraint is easily satisfied. Asymptotically optimal snake codes have been constructed this way in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+1}$ </tex-math></inline-formula> . As for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+2}$ </tex-math></inline-formula> , this framework keeps the last element fixed, and thus, a snake in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+2}$ </tex-math></inline-formula> is equivalent to a snake in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+1}$ </tex-math></inline-formula> , which is rather trivial. If one wants to do better, then it is inevitable to have some push-to-the-top operations on even indices, resulting in a combination of odd and even permutations in the snake, which increases the difficulty to guarantee the minimal Kendall’s <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau $ </tex-math></inline-formula> -distance constraint. Thus, Horovitz and Etzion pose the open problem to prove or disprove that the size of the largest snake in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+2}$ </tex-math></inline-formula> is not larger than the size of the largest snake in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+1}$ </tex-math></inline-formula> . A first step toward this problem is a negative answer by Wang and Fu, who construct a snake in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+2}$ </tex-math></inline-formula> with exactly one more permutation than an optimal snake in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+1}$ </tex-math></inline-formula> . In this paper, we give an explicit construction of a snake in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{2n+2}$ </tex-math></inline-formula> with size asymptotically approaching <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$({1}/{4})|S_{2n+2}|$ </tex-math></inline-formula> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call