Abstract
Dysfunction of the protein methyltransferase SET and MYND domain-containing protein 2 (SMYD2) is frequently linked to multiple diseases including cancer. The study focused on the role of SMYD2 in colorectal cancer (CRC) development. SMYD2 was expressed at high levels in CRC tissues and cells. Knockdown of SMYD2 in LOVO cells reduced cell proliferation, migration and invasiveness in vitro and it suppressed xenograft tumorigenesis in vivo. Overexpression of SMYD2 in HCT116 cells led to inverse trends. Mex-3 RNA binding family member A (MEX3A) was predicted as a target of SMYD2. Chromatin immunoprecipitation (ChIP)-reverse transcription quantitative polymerase chain reaction (qPCR) and cellular assays were performed and validated that SMYD2 activated MEX3A expression by promoting H3K36me2 modification on its promoter. Data in the STRING bioinformatics system indicated caudal type homeobox 2 (CDX2) as an important MEX3A-related gene. Silencing of MEX3A alone blocked proliferation and growth of CRC cells in vitro and in vivo, whereas MEX3A overexpression promoted cell growth by suppressing CDX2. In rescue experiments, MEX3A silencing suppressed the cell growth augmented by SMYD2, and CDX2 downregulation restored the malignance of cancer cells inhibited by MEX3A silencing. Taken together, this study reports that SMYD2-mediated activation of MEX3A augments progression of CRC by suppressing CDX2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have