Abstract

For a set of spatially dependent dynamical models, we propose a method for estimating parameters that control temporal dynamics by spatial smoothing. The new approach is particularly relevant for analyzing spatially distributed panels of short time series. The asymptotic results show that spatial smoothing will improve the estimation in the presence of nugget effect, even when the sample size in each location is large. The proposed methodology is used to analyze the annual mink and muskrat data collected in a period of 25 years in 81 Canadian locations. Based on the proposed method, we are able to model the temporal dynamics which reflects the food chain interaction of the two species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.