Abstract
Friction dampers of mechanical systems are frequently exposed to medium-frequency (M-F) dither generated in the surrounding environment. A dithered system of technical importance is the railway freight wagon with friction dampers in the primary suspension developing two-dimensional friction, where dither is generated by the rolling contact of wheel and rail. This paper presents some results of the investigation of the influence of dither on dry friction damping. This influence has been studied experimentally and theoretically, and the parameters of dither influencing dry friction damping have been indicated. An experimental set-up has been designed that allows investigating friction damping in the presence of dither. The experiments have shown that friction damping in the presence of the M-F dither behaves like viscous damping. This means that dither smoothes dry friction as far as damping is concerned. To investigate this phenomenon theoretically, a rheological model of dry friction has been proposed that is applicable to one- and two-dimensional friction. In the latter case, the model takes into account friction anisotropy. According to performed numerical simulations of freight wagon motion, with dither supplied to the model through measured vertical accelerations of axle boxes, smoothing dry friction by dither strongly influences ride dynamics of the wagon with friction dampers in the primary suspension. Smoothing dry friction by dither should be accounted for in numerical simulations of motion of vehicles with friction dampers in the primary suspension by employing a proper model of the two-dimensional friction and application of realistic dither generated by rolling contact.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have