Abstract
We introduce the class of “smooth rough paths” and study their main properties. Working in a smooth setting allows us to discard sewing arguments and focus on algebraic and geometric aspects. Specifically, a Maurer–Cartan perspective is the key to a purely algebraic form of Lyons’ extension theorem, the renormalization of rough paths following up on [Bruned et al.: A rough path perspective on renormalization, J. Funct. Anal. 277(11), 2019], as well as a related notion of “sum of rough paths”. We first develop our ideas in a geometric rough path setting, as this best resonates with recent works on signature varieties, as well as with the renormalization of geometric rough paths. We then explore extensions to the quasi-geometric and the more general Hopf algebraic setting.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.