Abstract

Building’s energy conservation signifies a lowering in building energy consumption without sacrificing thermal comfort. Window glazing is the most suitable approach to the built environment that can be controlled through its sustainable development for global energy consumption. In this work, for the first time, paraffin incorporated SnO2-Al2O3 composite coating is developed on a 5 cm × 5 cm glass using a screen-printing method, which signifies an intelligent cooling behaviour for a comfortable indoor environment irrespective of their emplacement. The composite energy-saving properties exhibit less transmission of infra-red light while keeping high visible light transmittance behaviour resulting superior heat-shielding performance. The composite coated glass's average indoor temperature profile remains at ∼30 °C when the outside temperature reaches a maximum of 45 °C during outdoor testing. While the same composite film is set inside, the indoor average temperature maintains ∼30 °C, whereas outside temperature reaches a maximum of 80 °C.The distinct temperature profile for composite coated glass indicates high transparency of 80% throughout the experiment. Interestingly paraffin has been incorporated into the composite, offering no leakage, translucent characteristics, and limited water ingress. In comparison, non-coated glass is failed to provide them with a comfortable, stable indoor temperature. We believe this study envisages the recent technological innovations combined with phase change material and transparent infrared absorber together as a composite for window glass for warmer climates, which further leads to significant energy savings compared with plain glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.