Abstract
We present techniques to obtain small circuits which also have low depth. The techniques apply to typical cryptographic functions, as these are often specified over the field GF (2), and they produce circuits containing only AND, XOR and XNOR gates. The emphasis is on the linear components (those portions containing no AND gates). A new heuristic, DCLO (for depth-constrained linear optimization), is used to create small linear circuits given depth constraints. DCLO is repeatedly used in a See-Saw method, alternating between optimizing the upper linear component and the lower linear component. The depth constraints specify both the depth at which each input arrives and restrictions on the depth for each output. We apply our techniques to cryptographic functions, obtaining new results for the S-Box of the Advanced Encryption Standard, for multiplication of binary polynomials, and for multiplication in finite fields. Additionally, we constructed a 16-bit S-Box using inversion in GF (216) which may be significantly smaller than alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.