Abstract
Vagus nerve stimulation (VNS) is an effective neurophysiological treatment for patients with refractory epilepsy, however, the mechanism of action remains unclear. Small animal positron emission tomography (PET) permits the monitoring of biochemical processes during multiple scans in the same animal. The aim of this pilot study was to explore the potential of 2-[ 18F]-fluoro-2-deoxy- d-glucose (FDG)-PET to investigate the effect of acute and chronic VNS on glucose metabolism in the rat brain. One week after EEG and VNS electrode implantation, a baseline FDG-PET scan was acquired during which animals were not stimulated. Secondly, scans were taken after first activation of the VNS electrode (acute VNS) and after one week of continuous VNS (chronic VNS). On the same time points, images were obtained in a control group. After acquisition, PET images were manually fused with MRI data. Normalized brain activities and left/right activity ratios of different brain structures were compared between control measurements and VNS group. During acute VNS, glucose metabolism was significantly decreased in the left hippocampus ( P < 0.05). Significant increases were found in both olfactory bulbs ( P < 0.05). During chronic VNS, a significant decrease in left/right ratio in the striatum ( P < 0.05) was found. Acute and chronic VNS induced changes in glucose metabolism in regions important for seizure control (hippocampus and striatum). Our results promote further brain research on VNS using small animal PET in rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.