Abstract

Vagus nerve stimulation (VNS) is used as therapy for treatment-resistant depression or epilepsy. This study used immunohistochemistry for biomarkers of short-term (c-Fos) and long-term (DeltaFosB) neuronal activation to map regions in brain that are activated by acute (2 h) or chronic (3 weeks) VNS in conscious Sprague-Dawley rats. Electrodes (Cyberonics Inc.) were implanted on the left vagus nerve and 1 week after surgery, stimulation began using parameters employed clinically (one burst of 20 Hz, 250 micros pulse width, 0.25 mA stimulation for 30 s every 5 min). Radio telemetry transmitters were used for monitoring blood pressure, heart rate, activity, and respiratory rate during VNS; neither acute nor chronic VNS significantly affected these parameters. Acute VNS significantly increased c-Fos staining in the nucleus of the solitary tract, paraventricular nucleus of the hypothalamus, parabrachial nucleus, ventral bed nucleus of the stria terminalis, and locus coeruleus but not in the cingulate cortex or dorsal raphe nucleus (DRN). Acute VNS did not affect DeltaFosB staining in any region. Chronic VNS significantly increased DeltaFosB and c-Fos staining bilaterally in each region affected by acute VNS as well as in the cingulate cortex and DRN. Using these stimulation parameters, VNS was tested for antidepressant-like activity using the forced swim test (FST). Both VNS and desipramine significantly decreased immobility in the FST; whereas desipramine decreased immobility by increasing climbing behavior, VNS did so by increasing swimming behavior. This study, then, identified potential sites in brain where VNS may produce its clinical effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call