Abstract

The 2nd law of thermodynamics yields an irreversible increase in entropy until thermal equilibrium is achieved. This irreversible increase is often assumed to require large and complex systems to emerge from the reversible microscopic laws of physics. We test this assumption using simulations and theory of a 1D ring of N Ising spins coupled to an explicit heat bath of N Einstein oscillators. The simplicity of this system allows the exact entropy to be calculated for the spins and the heat bath for any N, with dynamics that is readily altered from reversible to irreversible. We find thermal-equilibrium behavior in the thermodynamic limit, and in systems as small as N=2, but both results require microscopic dynamics that is intrinsically irreversible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.