Abstract
By employing time-of-flight spectroscopy, the group velocity of light propagating through bulk ZnO is demonstrated to dramatically decrease down to 2044 km/s when photon energy approaches the absorption edge of the material. The magnitude of this decrease is found to depend on light polarization. It is concluded that even though the slowdown is observed in the vicinity of donor bound exciton (BX) resonances, the effect is chiefly governed by dispersion of free exciton (FX) polaritons that propagate coherently via ballistic transport. Based on the experimentally determined spectral dependence of the polariton group velocity, the polariton dispersion is accurately determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.