Abstract

We present a theoretical and computational investigation of the possibility of achieving slow terahertz light by exploiting the tunneling induced transparency (TIT) effect in suitably engineered quantum well heterostructure devices. We design such a meta-material and show how TIT could lead to large values of the group refractive index, unfortunately at the cost of strong field attenuation due to decoherence. As a suitable alternative, we propose a grating, consisting of a buffer and a quantum cascade amplifier regions, arranged in such a way as to achieve slow light and simultaneously compensate for the large signal losses. Our calculations show that a binary message could be reliably transmitted through this system, with non-critical reduction of the signal to noise ratio, as we achieve a slow-down factor of more than 70. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.