Abstract

Randomly disordered (polydomain) liquid crystalline elastomers align under stress. We study the dynamics of stress relaxation before, during and after the Polydomain-Monodomain transition. The results for different materials show the universal ultra-slow logarithmic behaviour, especially pronounced in the region of the transition. The data is approximated very well by an equation Sigma(t) ~ Sigma_{eq} + A/(1+ Alpha Log[t]). We propose a theoretical model based on the concept of cooperative mechanical resistance for the re-orientation of each domain, attempting to follow the soft-deformation pathway. The exact model solution can be approximated by compact analytical expressions valid at short and at long times of relaxation, with two model parameters determined from the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.