Abstract
We performed a pump-probe experiment on the chiral magnet Cu_{2}OSeO_{3} to study the relaxation dynamics of its noncollinear magnetic orders, employing a millisecond magnetic field pulse as the pump and resonant elastic x-ray scattering as the probe. Our findings reveal that the system requires ∼0.2 s to stabilize after the perturbation applied to both the conical and skyrmion lattice phase, which is significantly slower than the typical nanosecond timescale observed in micromagnetics. This prolonged relaxation is attributed to the formation and slow dissipation of local topological defects, such as emergent monopoles. By unveiling the experimental lifetime of these emergent singularities in a noncollinear magnetic system, our study highlights a universal relaxation mechanism in solitonic textures within the slow dynamics regime, offering new insights into topological physics and advanced information storage solutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have