Abstract
Slope Entropy (SlpEn) is a novel method recently proposed in the field of time series entropy estimation. In addition to the well-known embedded dimension parameter, m, used in other methods, it applies two additional thresholds, denoted as δ and γ, to derive a symbolic representation of a data subsequence. The original paper introducing SlpEn provided some guidelines for recommended specific values of these two parameters, which have been successfully followed in subsequent studies. However, a deeper understanding of the role of these thresholds is necessary to explore the potential for further SlpEn optimisations. Some works have already addressed the role of δ, but in this paper, we extend this investigation to include the role of γ and explore the impact of using an asymmetric scheme to select threshold values. We conduct a comparative analysis between the standard SlpEn method as initially proposed and an optimised version obtained through a grid search to maximise signal classification performance based on SlpEn. The results confirm that the optimised version achieves higher time series classification accuracy, albeit at the cost of significantly increased computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.