Abstract
A traction control system was developed for an autonomous Martian rover using a sliding mode controller. The main inspiration for this project was NASA’s Mars rover, Curiosity, which suffered severe wheel damage due to the lack of an effective traction control system. A control system was sought out to effectively prevent wheel damage, slippage, and soil failure for a Martian rover. It was initially hypothe-sized that a sliding mode controller would be most effective to control the vehicle’s traction. A Simulink model was created with a deformable soil-rigid tire mathematical model in order to simulate the traction control system. The sliding mode controller was tested to be more robust and stable compared to a proportional-integral-derivative (PID) controller for the rover. The results elaborate the possible applica-tions for this project, which spans across commercial and military rovers, rescue robots, and planetary rov-ers in the private and global space industry.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have