Abstract
This paper explored the use of machine learning techniques to differentiate between two different musical eras of the same rock band, including the technique of Logistic Regression. Logistic regression (LR) is a widely used statistical modeling method for binary classification in supervised machine learning. It is often used to predict whether a given event belongs to one of two categories. The process helps data scientists understand which variables are good predictors of class membership. Applications of logistic regression include loan classification in the financial industry and predicting susceptibility to disease in the medical field. In this particular project, a dataset was constructed using data from Spotify and Genius consisting of songs and lyrics written by the band Fall Out Boy. A logistic regression model was developed from scratch to classify the songs and lyrics into one of two eras of the band: before their 2009 hiatus and afterward. The study aimed to determine if a computer could differentiate between the two eras. The model was also tested against other binary classification algorithms, including Random Forest and Support Vector Machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.