Abstract

In this paper, a small standalone solar powered DC microgrid is designed and analysed. The control technique used here is sliding mode control. The common control technique of controlling dc-dc converter is proportional Integral (PI) controller, which is not able to execute well under variations of load. DC-DC converter is nonlinear and time variant system therefore sliding mode controller can be used for dc-dc converter. DC microgrid model is designed and analysed by simulation using Typhoon HIL to observe the system’s dynamic response in view of load impact and battery charging. The buck converter is designed with PWM (pulse width modulation) based sliding mode controller. The tool chain have processor with ultra low latency and unprecedented execution rate for the converter. Dynamic equations associated with the control logic is derived for buck converter. The control technique is tested for step load changes. Sliding mode controller performance is compared with proportional integral (PI) controller. Fast and robust dynamic response of output voltage is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.